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Abstract

Statistical agencies widely use cell suppression methods for economic censuses and establishment surveys to protect

sensitive tabular data from disclosure to the public. The goal is to reduce the risk of disclosure by first identifying

sensitive cells as primary suppression cells and then finding additional cells as the complementary (secondary) sup-

pression cells to protect the primary cells against an attacker. In general, the cell suppression problems (CSP) can be

described as a linear programming problems. In this paper, we review the cell suppression problem, with a focus on

the network flow model of two-dimensional tables as well as the heuristic solutions and the exact optimal solutions.

Applications of cell suppression methods from statistical agencies are highlighted. The extension of the solutions to

high-dimensional, hierarchical, and linked tables is also discussed.
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1. Introduction

In the modern era of data ubiquity, the handling and publication of sensitive data pose profound challenges,

especially for statistical agencies responsible for disseminating information to the public while also preserv-

ing confidentiality. As tabular data formats continue to be a primary means of public data presentation, quite

a lot of statistical surveys or censuses still rely on techniques like cell suppression to mitigate the risk of

statistical disclosure.

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS)

conducts hundreds of surveys each year on issues including agricultural production, economics, demograph-

ics, and the environment. Every five years NASS also conducts the Census of Agriculture, providing the

only source of uniform, comprehensive agricultural data for every county in the nation. Statistical disclo-

sure limitation methods are applied by NASS to limit the risk of disclosure of individual information when

statistics are disseminated to the public. It is also required by law to protect the confidentiality of individual

information in the production of official statistics. For example, there are Title 7 of U.S. Code, Sec 2276 –

Confidentiality of Information – Agricultural Title – 1985; Confidential Information Protection and Statisti-

cal Efficiency Act (CIPSEA) of 2018; Title III of the Evidence Act of 2019; Title 13, U.S. Code, Title 26,

U.S. Code, and many others.

The current NASS cell suppression disclosure system was developed in the 1990s mainly based on Cox

(1995). However, many newly developed cell suppression methods can improve the computational efficien-

cies and the protection of the data. Research at NASS is underway to improve the disclosure limitation

methods. In this paper, we mainly review the work by Kelly et al. (1992), Cox (1995), Fischetti and Salazar

(1999), Fischetti and González (2000), and Steel et al. (2013) for their efforts in solving the cell suppression

problem for tabular data.

Kelly et al. (1992) laid the foundation for representing the two-dimensional table as a network and for-

mulating the cell suppression problem as a mixed integer linear programming (MILP) problem. Besides,

Kelly et al. (1992) proved the cell suppression problem to be an NP-hard (nondeterministic polynomial

time) problem. The paper also proposed a network-based heuristic solution under the min-total-value-of-

complementary-suppressions criterion. Building upon the network model and the linear optimization for-

mulation, Cox (1995) proposed another heuristic solution for two-dimensional tables. Fischetti and Salazar

(1999), on the other hand, delved into the computational aspect of the problem, introduced a new integer



linear programming model and employed the branch-and-cut algorithm to achieve exact solutions for large-

scale instances of two-dimensional tables. Fischetti and González (2000) and Steel et al. (2013) extended

the linear programming framework of cell suppression to three or higher-dimensional table, hierarchical

tables, and linked table.

In summary, these papers illuminate various aspects of the cell suppression problem, from mathematical

formulations to computational techniques, and from the heuristic solutions to the exact solutions. This

review paper aims to synthesize these contributions, evaluate their limitations, and explore potential future

directions for NASS to improve the current statistical disclosure system.

The paper is structured as follows. Section 2 introduces the cell suppression problems. The network

model as a representation of two-dimensional tables and a general linear programming framework of the

cell suppression problem are presented in Section 3. Section 4 illustrates the different formulations of the

protection level constraints in literature as well as the heuristic solutions and the exact optimal solutions.

The summary and some discussion of possible future research are stated in Section 5.

2. The Cell Suppression Problem

Magnitude data shown in tables, often derived from surveys or censuses of businesses, farms, institutions,

etc., are generally non-negative numbers. Their distribution is typically skewed, meaning a few entities

contribute large values. Disclosure limitation, in this case, is to ensure that the released data does not allow

for precise estimate of the values contributed by the most significant respondents. The most commonly

primary suppression rules used by statistical agencies to identify sensitive cells, referred to as primary cells,

in the tabular data are the (n) threshold rule, (n, k) rule, and the p-percent or pq rules.

To protect the set of primary cells in a table with margin totals, the most straightforward way is to

suppress them. However, the suppression of the primary cells alone can be easily attacked through the

margin totals. It is therefore necessary to suppress additional cells, which are termed as complementary cells.

The purpose of cell suppression is to guarantee that the attacker cannot get an estimation “close” enough to

the true cell value. The measurement of “closeness” is provided by the protection levels, which are derived

from some primary suppression rule. For example, Table 1 shows an example of a two-dimensional table

along with one primary cell 1000 and its protection level 23, then the predetermined protection interval is

[1000− 23, 1000 + 23] = [977, 1023]. Table 2 shows one cell suppression solution. The attacker’s interval



Table 1: Example of a two-dimensional table. The predetermined protection level of the primary cell 1000
is 23.

col1 col2 col3 col4 colT

row1 1000 P 13 18 25 1056
row2 12 10 40 50 112
row3 17 35 15 23 90
row4 30 28 40 200 298
row5 27 55 20 19 121
rowT 1086 141 133 317 1086

Table 2: Cell suppression solution 1 by minimizing the total number of complementary cells of Table 1.
Total complementary cell value = 255 with 3 complementary cells.

col1 col2 col3 col4 colT

row1 * 13 18 * 1056
row2 12 10 40 50 112
row3 17 35 15 23 90
row4 * 28 40 * 298
row5 27 55 20 19 121
rowT 1086 141 133 317 1086

estimate of the primary cell 1000, with some simple algebraic calculation using column totals (the last

column) and row totals (the last row) in Eq. (1), where the suppressed cells are denoted as x1, x2, x3 and x4,

is [800, 1025], which is wider than the required protection level [977, 1023]. Therefore, the cell suppression

solution 1 in Table 2 protects the primary cell successfully.

x1 + 13 + 18 + x2 = 1056

x3 + 28 + 40 + x4 = 298

x1 + 12 + 17 + x3 + 27 = 1086

x2 + 50 + 23 + x4 + 19 = 317

x1, x2, x3, x4 ≥ 0


⇒

x1 = 800 + x4

x2 = 255− x4

x3 = 230− x4

x1,x2, x3, x4 ≥ 0


⇒

x1 ∈ [800, 1025]

x2 ∈ [0, 225]

x3 ∈ [5, 230]

x4 ∈ [0, 225]


(1)

We will only consider tables with non-negative entries in this paper. Let matrix A = (aij) with aij ≥ 0

represent a two-dimensional table of size (m+1)×(n+1) with margin totals. For more compact expressions,

we also use a vector a⃗ = {a1, a2, · · · , aT }, where T = (m+1)× (n+1) to represent the cell values. Let

P = {(ik, jk), k = 1, · · · , p} be the set of primary cells, then we can officially define the protection levels



of the primary cell (ik, jk), k = 1, · · · , p.

Definition 1. (Protection Interval) For each primary cell (ik, jk) ∈ P, k = 1, · · · , p, the protection

interval is

[aikjk − LPLk, aikjk + UPLk],

where the upper protection level UPLk and the lower protection level LPLk for the primary cell (ik, jk)

are predetermined by the statistical agency with some primary suppression rule.

In most cases, the upper and lower protection levels are equal but they also can be different. The purpose

of cell suppression is to guarantee that the attacker’s interval estimate of the cell value aikjk is wider than

the required protection interval [aikjk − LPLk, aikjk + UPLk].

Table 3: Cell suppression solution 2 of Table 1. Total complementary cell value = 165 with 5 complementary
cells.

col1 col2 col3 col4 colT

row1 * 13 18 * 1056
row2 12 10 40 50 112
row3 17 * 15 * 90
row4 30 28 40 200 298
row5 * * 20 19 121
rowT 1086 141 133 317 1086

Table 4: Cell suppression solution 3 by minimizing the total value of complementary cells of Table 1. Total
complementary cell value = 85 with 6 complementary cells.

col1 col2 col3 col4 colT

row1 * * * 25 1056
row2 * * 40 50 112
row3 * 35 * 23 90
row4 30 28 40 200 298
row5 27 55 20 19 121
rowT 1086 141 133 317 1086

Table 2, 3, and 4 show three different cell suppression solutions to protect the primary cell a11 = 1000

with required protection level 23. They all protect the primary cell a11 = 1000 successfully. However,

they reflect different loss of information as shown in Table 5. The measurement of information loss in

cell suppression is either total number of complementary cells, total value of complementary cells, or a

combination of the two criteria.



Table 5: Information loss of the three cell suppression solutions of Table 1.

Total value of complementary cells Total number of complementary cells

Solution 1 255 3
Solution 2 165 5
Solution 3 85 6

Table 6: A general setting of a two-dimension table of size (m+ 1)× (n+ 1).

col1 col2 · · · coln colT

row1 a11 a12 · · · a1n a1,n+1

row2 a21 a22 · · · a2n a2,n+1
...

...
...

...
...

...
rowm am1 am2 · · · amn am,n+1

rowT am+1,1 am+1,2 · · · am+1,n am+1,n+1

In summary, the cell suppression problem can then be described as follows. Given a set of primary cells

along with the required protection levels, the objective is to find a set of complementary cells to protect

the primary cells against the attacker (make sure the attacker’s interval estimate of the cell value is wider

than the predetermined protection levels) while minimizing the information loss. A general setting of a

(m+ 1)× (n+ 1) two-dimensional table is shown is Table 6. Let matrix A = (aij) with aij ≥ 0 represent

the given table with non-negative entries. The margin totals introduce the following conditions:

ai,n+1 =
n∑

j=1

aij for i = 1, · · · ,m row totals;

am+1,j =

m∑
i=1

aij for j = 1, · · · , n column totals;

am+1,n+1 =

m∑
i=1

n∑
j=1

aij grand total.

(2)

If we put all of the cell value aij into one vector a⃗ = [a1, a2, · · · , aT ], then the above equations in Eq.

(2) can be written into a more compact way:

Ma⃗ = 0⃗, (3)

where M is a matrix with values of {−1, 0,+1}.

To find the complementary cells, we minimize the following objective function which represents the



information loss

min

(m+1)∑
i=1

(n+1)∑
j=1

cijxij (4)

subject to

xij = 0 or 1 (5)

xikjk = 1, if (ik, jk) ∈ P (6)

where xij is the indicator for suppression, and cost cij represents the information loss when we suppress

cell )i, j). For example, if cij = 1, the objective function is seeking the least total number of suppressed

cells. If cij = aij , the objective function is seeking the least total value of suppressed cells.

Eq. (4), (5) and (6) are the basic settings of the cell suppression problem. Different papers handle the

protection level constraints in different ways and we will discuss the details in Section 4.

3. The Network Model for the Cell Suppression Problem

A two-dimensional table can be naturally represented by a network (See Fig. 1). The network optimization

formulation of the cell suppression problem for two-dimensional tables was first proposed in Kelly et al.

(1992) and then adopted by Cox (1995) and Fischetti and Salazar (1999) as well as other literature on

cell suppression. However, this elegant structure is not preserved for 3-dimensional or higher-dimensional

tables, unless it can be deconstructed into a collection of independent two-dimensional subtables.

Definition 2. (Graph) A graph is a pair G = (V,E), where V is a set whose elements are called vertices,

and E is a set of paired vertices, whose elements are called edges.

In operations research, the vertices are usually called nodes and the edges are called arcs. We will follow

that convention in this paper.

Definition 3. (Basic Network) A basic network is a directed graph D = (V,A) with the following proper-

ties:

1. Exactly one source node, where the source node is a node with zero in-degree edges.

2. Exactly one sink node, where the sink node is a node with zero out-degree edges.



Figure 1: Network D = (V,A) for Table 1.

3. Each edge e of G has a positive capacity q(e), where q(e) = the maximum amount of the flow that can

go through the edge e.

Fig. 1 shows an example of the network representation of Table 1, where rowT is the source node, colT

is the sink node, and the capacity of edge e = (i, j) is qij .

Definition 4. (Flow) Flow is an assignment fij to each edge e = (i, j) of the network that satisfies:

1. The feasibility condition:

fij ≤ qij (7)

2. The flow conservation law: the total flow entering a node must equal the total flow leaving a node

except the source node and the sink node.

The linear system expressed in Eq. (2) and Eq. (3) which guarantees the margin totals in table A = (aij)

is equivalent to the flow conservation law in network. For example, for the node row1, the in-flow = 1056

and the out-flow = [1000, 13, 18, 25] which are equal.



4. Solutions to the Cell Suppression Problem

Based on the common linear programming framework defined in Eq. (4), (5), (6), this section will focus

on the how these papers construct the linear constraints of the protection level requirement. Recall that a

successful cell suppression solution must make sure that the attacker’s estimate of the primary cell ik must

be wider than the required protection interval [aik − LPLk, aik + UPLk].

4.1 Heuristic Solutions to the Cell Suppression Problem

There are two main heuristic solutions proposed by Kelly et al. (1992) and Cox (1995), respectively. They

have something in common:

1. They are both iterative methods, which means that they protect the primary cells sequentially, i.e., one

at a time.

2. Within each iteration, a heuristic network-based solution is proposed to satisfy the protection level

constraints for the primary cell.

The difference between Kelly et al. (1992) and Cox (1995) are the ways they handles the protection level

constraints.

Now, consider the published Table 2 with 4 suppressed cells from the perspective of the attacker. The

goal of the attacker is to infer the suppressed cell values. Assume that the feasible values for the suppressed

cells are fij’s, and the set of suppressed cells is P ∪ C where P and C represent the set of primary cells and

complementary cells, respectively. Then, the attacker would have:

Mf⃗ = 0⃗

fij = aij , for (i, j) /∈ P ∪ C

lbij ≤ fij ≤ ubij , for (i, j) ∈ P ∪ C


, (8)

where [lbij , ubij ] represents the possible range of the cell value aij known to the attacker, usually lbij =

0 and ubij = +∞ for tables with non-negative entries.

Assume the prespecified upper and lower protection level for the primary cell (ik, jk) is UPLk and

LPLk, respectively. Next, the required protection levels are translated the into the linear constraints by

introducing two sets of auxiliary continuous variables for the primary cell (ik, jk):



Table 7: One feasible solution for suppressed Table 2.

col1 col2 col3 col4 colT

row1 980 13 18 45 1056
row2 12 10 40 50 112
row3 17 35 15 23 90
row4 50 28 40 180 298
row5 27 55 20 19 121
rowT 1086 141 133 317 1086

Gk =



gk11 gk12 · · · gk1,n+1

gk21 gk22 · · · gk2,n+1

...
...

...
...

gkm+1,1 gkm+1,2 · · · gkm+1,n+1


,Hk =



hk11 hk12 · · · hk1,n+1

hk21 hk22 · · · hk2,n+1

...
...

...
...

hkm+1,1 hkm+1,2 · · · hkm+1,n+1


. (9)

Like what we did in Eq. (3), we can transfer the two matrices into two vectors g⃗k and h⃗k for a compact

expression.

Mg⃗k = 0⃗

aij − (aij − lbij)xij ≤ gkij ≤ aij + (ubij − aij)xij

 (10)

Mh⃗k = 0⃗

aij − (aij − lbij)xij ≤ hki ≤ aij + (ubij − aij)xij

 (11)

gkik ≥ aik + UPLk (12)

hkik ≤ aik − LPLk (13)

g⃗k and h⃗k are both feasible values for the suppressed table; thus, their satisfaction of Eq. (8) leads to

constrain 10 and 11. Besides, the inequality in constraint 10 and 11 is equivalent to

gkij = aij , if xij = 0

lbij ≤ gkij ≤ ubij , if xij = 1

 and
hkij = aij , if xij = 0

lbij ≤ hkij ≤ ubij , if xij = 1


In summary, the cell suppression problem can be modeled as a mixed integer linear programming



(MILP) problem in Eq. (4), (5), (6), and for each primary cell (ik, jk) ∈ P , Eq. (10), (11), (12), (13)

with the binary variables x⃗ and the continuous variables g⃗k and h⃗k. This MILP formulation was first pro-

posed in Kelly et al. (1992) and in this paper, we adopted the compact version proposed in Fischetti and

González (2000).

The mixed integer linear programming (MILP) model for cell suppression is proved to be strongly NP-

hard in Kelly et al. (1992), suggesting that the existence of an efficient (i.e., polynomial time) algorithm

for the exact solution for all possible instances is highly unlikely. Besides, Fischetti and Salazar (1999)

and Fischetti and González (2000) pointed out that there are exponentially many constraints enforcing the

protection level requirements. Restricted to computer performance and the algorithm, researchers like Kelly

et al. (1992) and Cox (1995) can only propose some heuristic solutions to the large-scale MILP problem

in the early stage. Later with the development of integer programming algorithm (such as branch-and-

cut algorithm proposed in Padberg and Rinaldi (1991)), some exact optimal solutions were proposed, for

example, in Fischetti and Salazar (1999) and Fischetti and González (2000). We will discuss these exact

optimal solutions in the next section.

In Kelly et al. (1992), the objective function in Eq. (4) is actually approximated by its linear relaxation

in each iteration to improve the computational efficiency:

min

(m+1)∑
i=1

(n+1)∑
j=1

cij(y
+
ij + y−ij) (14)

where y+ij , y
−
ij ≥ 0 are continuous variables. Cell (i, j) is suppressed if either y+ij > 0 or y−ij > 0.

This is essentially a minimal-cost-flow (MCF) problem and there exist many efficient algorithms such

as Edmonds and Karp (1972); Ervolina and McCormick (1993); Goldberg and Tarjan (1989, 1990); Hassin

(1983); Klein (1967); Orlin (1997).This MCF approximation to the objective function with other costs was

widely applied in practice, such as Jewett (1993); Robertson (1993).

Cox (1995) built up the network optimization problem using Eq. (4), (5), (6). However, it deals with

the protection level constraints in a different way from Eq. (10), (11), (12), (13) by finding the alternating

cycles.

Each cell/arc in the network corresponds to two indicators x+i , x
−
i ∈ {0, 1}, representing flow increase

and flow decrease, respectively. Then the objective function is



min

(m+1)∑
i=1

(n+1)∑
j=1

cij(x
+
ij + x−ij) (15)

In the solution to this MILP problem, either x+ij = 1 or x−ij = 1 indicates the suppression of the cell.

Assume that (ik, jk) is the primary cell for the current iteration, an alternating cycle γ containing arc, which

connects row ik and column jk, can be found. Let q(γ) = min{aij : (i, j) ∈ γ}. To protect the primary

cell (ik, jk), any cells/arcs in γ are selected as complementary cells, that will make the attacker’s estimate

of aikjk to be [aikjk − q(γ), aikjk + q(γ)]. If q(γ) ≥ UPLk and q(γ) ≥ LPLk, then these complementary

cells can successfully protect the primary. If not, another alternating cycle γ containing arc (ik, jk) can be

found to protect the remaining protection level.

Table 3 shows an example of this procedure. Given the primary cell (row1, col1) with a11 = 1000 and

protection level UPLk = LPLk = 23, the first alternating cycle was selected as γ1 = {(row1, col1), (col1,

row2), (row2, col2), (col2, row1) }. q(γ1) = min{ a11 = 1000, a21 = 12, a22 = 10, a12 = 13 } = 10.

Although the required protection level is 23, then the remaining protection requirement is 23 − 10 = 13.

Then the second alternating cycle was selected as γ2 = {(row1, col1), (col1, row3), (row3, col3), (col3,

row1)}. q(γ2) = min{a11 = 1000, a31 = 17, a33 = 15, a13 = 18 } = 15 > 13. The suppression of

the complementary cells in γ1 and γ2 can successfully protect the primary cell (row1, col1) with required

protection level 23.

The selection of the alternating cycle γ is achieved by solving the MILP problem. Different solutions

are obtained by specifying different costs cij’s. For example, to minimize the total value of complementary

cells for the current iteration primary cell (ik, jk), the costs are defined as

cij =


−1−

∑
(i,j) ̸=(ik,jk)

cij , for (i, j) = (ik, jk) (a)

1, for (i, j) ∈ S (b)

|S|+ aij , otherwise, (c)

where S is the set of previously suppressed cells, i.e., previously handled primary cells and related

complementary cells while excluding the current primary cell (ik, jk); |S| is the number of previously

suppressed cells. The large negative cost in (a) for the primary cell will force x+ikjk = 1 or x−ikjk = 1 for

suppression; the cost of 1 in (b) encourages the selection of previously suppressed cells to protect the current



primary cell and therefore reduces the number/value of newly suppressed cell; the cost of |S|+ aij in (c) for

all other cells encourages small value cells to be selected in the solution. This is a pure integer programming

problem, i.e., no continuous variable. However, in applications, a similar linear relaxation (MCF) to Kelly

et al. (1992) is used for a faster solution.

The “heuristic” that the cost cij = aij , which represents the total value of suppressed cells exactly,

manifests itself in Eq. (15). Further, this alternating cycle method can only provide symmetric protection

which will lead to over-suppression for asymmetric protection requirements. Finally, for both heuristic

solutions, the iterative method inevitably leads to over-suppression compared with the method of considering

all primary cells together.

4.2 Exact Optimal Solutions to the Cell Suppression Problem

Fischetti and Salazar (1999) adopted the formulation of Eqs. (4), (5) and (6) but built up a new integer

programming approach (without continuous variables g⃗k and h⃗k) using the max-flow min-cut theorem,

which will be discussed below.

The attacker’s perspective can be used to derive the protection level constraints. Given a suppressed

table with some primary cells P and complementary cells C, suppose SUP = P ∪ C. Fischetti and Salazar

(1999) developed an incremental network D(SUP ) from the original network D = (V,A) (See Fig. 2):

1. Remove all the arcs (i, j) ∈ A\SUP .

2. Replace each arc (i, j) ∈ SUP by two arcs, namely:

– a forward arc (i, j) with capacity qij = aij − lbij

– a reverse arc (i, j) with capacity qji = ubij − aij .

Each forward arc of D(SUP ) corresponds to a flow increase y+ij of an arc of D while each reverse arc

corresponds to a decrease of the flow value y−ij . Then the feasible value for cell (i, j) is fij = aij+y+ij −y−ij .

Recall that [lbij , ubij ] is the feasible range of the cell value aij which is known to the attacker, usually

lbij = 0 and ubij = +∞ for positive tables. Thus, lbij ≤ fij = aij + y+ij − y−ij ≤ ubij leads to the capacity

constraints 0 ≤ y+ij ≤ qij = aij − lbij , 0 ≤ y−ij ≤ qji = ubij − aij .

Definition 5. (Cut) A cut is a node partition (S, T ) such that s is in S and t is in T , where s is the source

node and t is the sink node.



Figure 2: Procedure to generate the incremental network D(SUP ) from the original network D = (V,A).

Definition 6. (Capacity of a cut) Capacity (S, T ) = sum of capacities of arcs leaving S.

Theorem 1. (Max-Flow Min-Cut Theorem.) In a flow network, the maximum amount of flow passing from

the source to the sink is equal to the total capacity of the edges in a minimum cut, i.e., the smallest total

capacity of the edges which if removed would disconnect the source from the sink.

The interval estimate of a primary cell aikjk from the attacker would be [aikjk − max(y−ikjk), aikjk +

max(y+ikjk)]. From the network flow theory, we have

max(y+ikjk)

= Max increase on cell (ik, jk)

= Max-flow from s = jk to t = ik

= Min-cut from s = jk to t = ik

= the smallest total capacity q of the edges which

which if removed would disconnect s = jk to t = ik

max(y−ikjk)

= Max decrease on cell (ik, jk)

= Max-flow from s = ik to t = jk

= Min-cut from s = ik to t = jk

= the smallest total capacity q of the edges which

if removed would disconnect s = ik to t = jk

,



To protect the primary cell (ik, jk), the attacker’s estimate must be wider than the protection levels.

[aikjk −max(y−ikjk), aikjk +max(y+ikjk)] ⊆ [aikjk − LPLk, aikjk + UPLk)]

⇔ max(y−ikjk) ≥ LPLk,max(y+ikjk) ≥ UPLk

⇔ min (jk, ik)-cut ≥ LPLk, min (ik, jk)-cut ≥ UPLk

⇔ any (jk, ik)-cut ≥ LPLk, any (ik, jk)-cut ≥ UPLk

(16)

⇔

∑
(u,v)∈δ+(S)\{(jk,ik)}

quvxuv ≥ UPLk, for all S ⊂ V : jk ∈ S, ik /∈ S,

∑
(u,v)∈δ+(S)\{(ik,jk)}

quvxuv ≥ LPLk, for all S ⊂ V : ik ∈ S, jk /∈ S,

(17)

where δ+(S) denotes the cut containing the arcs of D(A) leaving a given S ⊆ V , and arc capacities

quv previously defined. D(A) is constructed as D(SUP ) with each arc being replaced by a forward arc

and a reverse arc. The condition for all S ⊂ V : jk ∈ S, ik /∈ S implies that there are exponentially many

protection level constraints for each primary cell.

A branch-and-cut algorithm for the exact optimal solution of the pure integer programming problem

is proposed in Fischetti and Salazar (1999). Some tricks are used to reduce the number of constraints to

improve the computational efficiency as well.

4.3 The Extension of the Linear Programming Formulation of Cell Suppression to High dimen-

sional, Hierarchical and Linked Tables

Fischetti and González (2000) studied MILP formulation for the cell suppression problem proposed in Kelly

et al. (1992). However, the protection level constraints are remodeled by employing the dual-block structure

of the linear constraints for each primary cell (ik, jk) ∈ P – Eqs. (10), (11) and (12), (13) – using Bender’s

decomposition (Wolsey and Nemhauser (1999)). The idea is to use standard LP duality theory to project

the auxiliary variables g⃗k and h⃗k, k = 1, ..., p away from the model and formulate a integer programming

problem without any continuous variables. An enumerative algorithm in the space of the decision variable x⃗

was outlined for its exact optimal solution. Some near-optimal solutions can be also obtained from a linear

relaxation of the integer programming problem. The significant advantage of this formulation is that it can

be easily generalized to three or higher-dimensional tables, hierarchical tables, and linked tables.



Steel et al. (2013) used the framework of the MILP problem and extended it to high dimensional, hierar-

chical, and linked tables. The details on the linear constraints introduced by the complex table structure such

as high dimensional, hierarchical, and linked were provided. Similar tricks to Fischetti and González (2000)

were used to reduce the problem scale. A near-optimal solution was obtained using the Linear-programming

Solver Cplex developed by IBM (See Cplex (2009)). A quickaudit procedure was applied to check the risk

of under-suppression.

5. Summary

In this paper, five papers on classical linear programming formulation of the cell suppression problem for

two-dimensional tables based on the network flow theory and its extension to high dimensional, hierarchical,

and linked tables were reviewed. The development of the solutions from heuristic to optimal evolves along

with the development of the (mixed) integer programming algorithm. Kelly et al. (1992) and Cox (1995)

are among the pioneers in studying the cell suppression problem. The heuristic solutions were implemented

for economic surveys and the Economic Census in 1990s by the U.S. Census Bureau and the Census of

Agriculture conducted by Statistics Canada before 2021 (See Cox (1992), Robertson (1993) and Jewett

(1993)).

Fischetti and Salazar (1999) and Fischetti and González (2000) contributed greatly to a theoretically

sound and computationally efficient exact optimal solution to the cell suppression problem with an integer

programming formulation. This work produces the software program τ -ARGUS designed to protect statis-

tical tables with cell suppression that are currently used by statistical agencies in the European Union. The

improvement on the cell suppression methodology proposed in Steel et al. (2013) was then applied to the

surveys by the U.S. Census Bureau.

The motivation of this review paper is NASS’s ongoing effort to upgrade the current cell suppression

disclosure system that was developed in the 1990s based on primarily Cox (1995). The development of

modern cell suppression frameworks has led NASS to develop a new disclosure system based on the efficient

(mixed) integer linear programming algorithms, such as branch-and-cut, quantify the over-suppression of

near-optimal solutions to the exact optimal solutions, and compare the performance on several commercial

Linear-programming algorithms, such as Cplex (2009) and Gurobi Optimization, LLC (2023).
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